

RF MEMS Switch Packaging

IMAPS New England 44th Symposium & Expo, Boxboro, MA Session: RF and Microwave - Innovations and Emerging Technologies

May 3, 2017

Agenda

- Introduction
- Packaging challenges
- Solutions
- Test Results
- Future Work
- Summary

What is <u>GE Digital-Micro-Switch Technology</u>?

A novel micro-mechanical *switch* architecture based on an ultra-reliable material set, incorporating new design and processing techniques

Beam lifetime comparison under accelerated test conditions

Over 10+ years of development, over 40 patent families and know-how covering materials & fabrication processes, as well as system architecture, design, test

nenlomicro

GE DMS technology can enable new, disruptive products: High-power, High-reliability SMART RELAY SYSTEMS

RF Relay

The GE Approach

• GE approached <u>MEMS reliability</u> issues not as a semiconductor company, but with decades of experience in high-performance alloys

- GE's breakthrough innovations in materials and processing enable true Product Development Platform:
- <u>High-Reliability:</u> Shipping in production to a 3B cycles spec
- <u>High-power capable:</u> Opens up new markets, larger TAM
- <u>Simple design, <12 mask layers:</u> Can scale with volume to very low cost
- <u>Simple design, wide design space:</u> Shorter design cycles = more products

1mm x 1.5mm

Digital-Micro-Switch Applications

Step function improvements in power handling and reliability

MEMS Product Portfolio - 2017

RF Tuning Products

- 6mm x 6mm LGA / BGA
- 6 channels, 25W/channel
- DC to 3GHz
- Embedded controller
- Target Markets: A/D, Industrial
- Target Applications: Tunable UHF/VHF/HF radios, general purpose EM relay replacement, WPT

RF Switching Products

• Target Applications: Switched filters, switch matrix, high power RF switching, EM replacement

Power Relay Products

Target Market: Industrial, Test & Measurement

RF Packaging Considerations

Package Design Considerations

- Maintain device hermeticity
- Compatible materials: Die attach films, mold compound, substrate
- Package geometry
- System-in-package component interaction

Package Design Approach

- Device-package co-design
- Design iteration
- Design for test
- Experimental validation

RF Package Design Case Study

MM3100 - 6 Channel SPST Digital Micro-switch

- Hermetic 6mm x 6mm x 1.3mm LGA Package
- Integrated SPI Bus Gate Control
- DC to >3 GHz Frequency Range
- 25 Watt (CW), 200W (Pulsed) Max Power Handling
- Low On-State Insertion Loss < 0.3 dB @ 3 GHz
- Low On-State Resistance < 0.75 Ω
- -25dB Isolation @ 3 GHz
- Maximum voltage (AC or DC): +200 Volt on RF Input
- < 10us On/Off Switching Time
- High Reliability > 3 Billion Switching Operations

- Target Markets: A/D, Industrial
- Target Applications: Tunable UHF/VHF/HF radios, general purpose EM relay replacement, WPT

Wafer Level Packaging

Hermetic Cap sealed with glass frits (48) high reliability cantilever switches in a 3.6mm x 4mm die

MM3100

(6) Channels each capable of carrying 25W/Channel (1A)

*

Device Substrate

Substrate Design Considerations

Stacked Die Considerations

• Keep out regions

Stacked Die Impact

Simulation Results

Insertion loss

Return loss

Minimized Impact of die stacking with appropriate selection of:

- Die attach film
- Cap thickness
- Die thickness and placement location

Encapsulant Effect

🔛 menlomicro

Both Ch. 1 & Ch. 3 show improvement of insertion loss and return loss due to the better impedance matching from the dielectric loading of the encapsulant material

RF Electrical Testing

Evaluation kit

De-embedding up to package

- Simulation results match experimental data
- Low On-State Insertion Loss < 0.3 dB @ 3 GHz

RF Power Testing

- Test conducted at -40C, 0C, RT, 70C, 85C
- With and without forced convection
- 25 Watt (CW), 200W (Pulsed) Max Power Handling

Package Rel/Pre-Qual Test

Stress Test Name	Code	Condition	
Life test (cold)	RTOL	>10B* cycles @ RT	
Temperature Humidity Bias	THB	85°C*/85%RH Held closed Biased to failure taret 500hrs JESD22 A101	
85°C/85%RH storage	85-85	85°C*/85%RH 1000 hours	
Pressure pot unbiased (PPOT)	PPOT	121°C* @ 15PSIg* 168 hrs	
Unbiased HAST	UHAST	130°C* @ 85%RH 100 hrs	
Temperature Cycle (TMCL)	TMCL	-40C* to 125C* 1000x JESD22 A104 Cond.G	
High temp storage (HTS)	HTS	125°C*/1000hrs	
ESD	ESD	HBM Class 0	
Solder shock	WAVE	260°C*/10 sec* dip	
Preconditioning	MSL	MSL 3	
Drop/Shock	DROP	JESD22 B111 1,500g (0.5ms)	
Vibration	VIB	JESD22 B103B Cond 1 20g*	Not started
Reworkability	REWORK	3x Pb-free SAC reflow	Pass

🔛 menlomicro

Package Miniaturization

• Flip Chip assembly

• Metal seal for hermeticity

Cap view

New Package Development

Today: Glass frit based hermetic package

500um wide glass frit

Glass Frit Sealed Wafer Level Package

- Large die: needs escape routing past frit line
- Low package I/O density

Future: Thru Glass Via (TGV) package

Thru glass via

TGV Package

- Metal seal ring
- TGV IO's: short trace lengths
- Very high package I/O density
- Low temp WLP process

		500um frit pkg (Base line)	TGV capping
y	Length (L)	6mm	2mm
	Package Height (H)	1.2mm	0.8mm
	Insertion loss in dB @ (1, 10, 20GHz)	0.09 0.56 1.20	0.03 0.26 0.16

MEMS Packaging Roadmap

Continuous shrink of both die and package

Please contact us for more information:

sales@menlomicro.com

THANK YOU!